3.1.62 \(\int \frac {a c+a d x+b c x^3+b d x^4}{(a+b x^3)^{3/2}} \, dx\) [62]

3.1.62.1 Optimal result
3.1.62.2 Mathematica [C] (verified)
3.1.62.3 Rubi [A] (verified)
3.1.62.4 Maple [A] (verified)
3.1.62.5 Fricas [C] (verification not implemented)
3.1.62.6 Sympy [A] (verification not implemented)
3.1.62.7 Maxima [F]
3.1.62.8 Giac [F]
3.1.62.9 Mupad [F(-1)]

3.1.62.1 Optimal result

Integrand size = 32, antiderivative size = 490 \[ \int \frac {a c+a d x+b c x^3+b d x^4}{\left (a+b x^3\right )^{3/2}} \, dx=\frac {2 d \sqrt {a+b x^3}}{b^{2/3} \left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )}-\frac {\sqrt [4]{3} \sqrt {2-\sqrt {3}} \sqrt [3]{a} d \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} E\left (\arcsin \left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}{\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}\right )|-7-4 \sqrt {3}\right )}{b^{2/3} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}}+\frac {2 \sqrt {2+\sqrt {3}} \left (\sqrt [3]{b} c-\left (1-\sqrt {3}\right ) \sqrt [3]{a} d\right ) \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}{\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}\right ),-7-4 \sqrt {3}\right )}{\sqrt [4]{3} b^{2/3} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}} \]

output
2*d*(b*x^3+a)^(1/2)/b^(2/3)/(b^(1/3)*x+a^(1/3)*(1+3^(1/2)))-3^(1/4)*a^(1/3 
)*d*(a^(1/3)+b^(1/3)*x)*EllipticE((b^(1/3)*x+a^(1/3)*(1-3^(1/2)))/(b^(1/3) 
*x+a^(1/3)*(1+3^(1/2))),I*3^(1/2)+2*I)*(1/2*6^(1/2)-1/2*2^(1/2))*((a^(2/3) 
-a^(1/3)*b^(1/3)*x+b^(2/3)*x^2)/(b^(1/3)*x+a^(1/3)*(1+3^(1/2)))^2)^(1/2)/b 
^(2/3)/(b*x^3+a)^(1/2)/(a^(1/3)*(a^(1/3)+b^(1/3)*x)/(b^(1/3)*x+a^(1/3)*(1+ 
3^(1/2)))^2)^(1/2)+2/3*(a^(1/3)+b^(1/3)*x)*EllipticF((b^(1/3)*x+a^(1/3)*(1 
-3^(1/2)))/(b^(1/3)*x+a^(1/3)*(1+3^(1/2))),I*3^(1/2)+2*I)*(b^(1/3)*c-a^(1/ 
3)*d*(1-3^(1/2)))*(1/2*6^(1/2)+1/2*2^(1/2))*((a^(2/3)-a^(1/3)*b^(1/3)*x+b^ 
(2/3)*x^2)/(b^(1/3)*x+a^(1/3)*(1+3^(1/2)))^2)^(1/2)*3^(3/4)/b^(2/3)/(b*x^3 
+a)^(1/2)/(a^(1/3)*(a^(1/3)+b^(1/3)*x)/(b^(1/3)*x+a^(1/3)*(1+3^(1/2)))^2)^ 
(1/2)
 
3.1.62.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.04 (sec) , antiderivative size = 75, normalized size of antiderivative = 0.15 \[ \int \frac {a c+a d x+b c x^3+b d x^4}{\left (a+b x^3\right )^{3/2}} \, dx=\frac {x \sqrt {1+\frac {b x^3}{a}} \left (2 c \operatorname {Hypergeometric2F1}\left (\frac {1}{3},\frac {1}{2},\frac {4}{3},-\frac {b x^3}{a}\right )+d x \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {2}{3},\frac {5}{3},-\frac {b x^3}{a}\right )\right )}{2 \sqrt {a+b x^3}} \]

input
Integrate[(a*c + a*d*x + b*c*x^3 + b*d*x^4)/(a + b*x^3)^(3/2),x]
 
output
(x*Sqrt[1 + (b*x^3)/a]*(2*c*Hypergeometric2F1[1/3, 1/2, 4/3, -((b*x^3)/a)] 
 + d*x*Hypergeometric2F1[1/2, 2/3, 5/3, -((b*x^3)/a)]))/(2*Sqrt[a + b*x^3] 
)
 
3.1.62.3 Rubi [A] (verified)

Time = 0.51 (sec) , antiderivative size = 495, normalized size of antiderivative = 1.01, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {2019, 2417, 759, 2416}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {a c+a d x+b c x^3+b d x^4}{\left (a+b x^3\right )^{3/2}} \, dx\)

\(\Big \downarrow \) 2019

\(\displaystyle \int \frac {c+d x}{\sqrt {a+b x^3}}dx\)

\(\Big \downarrow \) 2417

\(\displaystyle \left (c-\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a} d}{\sqrt [3]{b}}\right ) \int \frac {1}{\sqrt {b x^3+a}}dx+\frac {d \int \frac {\sqrt [3]{b} x+\left (1-\sqrt {3}\right ) \sqrt [3]{a}}{\sqrt {b x^3+a}}dx}{\sqrt [3]{b}}\)

\(\Big \downarrow \) 759

\(\displaystyle \frac {d \int \frac {\sqrt [3]{b} x+\left (1-\sqrt {3}\right ) \sqrt [3]{a}}{\sqrt {b x^3+a}}dx}{\sqrt [3]{b}}+\frac {2 \sqrt {2+\sqrt {3}} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \left (c-\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a} d}{\sqrt [3]{b}}\right ) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt [3]{b} x+\left (1-\sqrt {3}\right ) \sqrt [3]{a}}{\sqrt [3]{b} x+\left (1+\sqrt {3}\right ) \sqrt [3]{a}}\right ),-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt [3]{b} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}}\)

\(\Big \downarrow \) 2416

\(\displaystyle \frac {2 \sqrt {2+\sqrt {3}} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \left (c-\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a} d}{\sqrt [3]{b}}\right ) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt [3]{b} x+\left (1-\sqrt {3}\right ) \sqrt [3]{a}}{\sqrt [3]{b} x+\left (1+\sqrt {3}\right ) \sqrt [3]{a}}\right ),-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt [3]{b} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}}+\frac {d \left (\frac {2 \sqrt {a+b x^3}}{\sqrt [3]{b} \left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )}-\frac {\sqrt [4]{3} \sqrt {2-\sqrt {3}} \sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} E\left (\arcsin \left (\frac {\sqrt [3]{b} x+\left (1-\sqrt {3}\right ) \sqrt [3]{a}}{\sqrt [3]{b} x+\left (1+\sqrt {3}\right ) \sqrt [3]{a}}\right )|-7-4 \sqrt {3}\right )}{\sqrt [3]{b} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}}\right )}{\sqrt [3]{b}}\)

input
Int[(a*c + a*d*x + b*c*x^3 + b*d*x^4)/(a + b*x^3)^(3/2),x]
 
output
(d*((2*Sqrt[a + b*x^3])/(b^(1/3)*((1 + Sqrt[3])*a^(1/3) + b^(1/3)*x)) - (3 
^(1/4)*Sqrt[2 - Sqrt[3]]*a^(1/3)*(a^(1/3) + b^(1/3)*x)*Sqrt[(a^(2/3) - a^( 
1/3)*b^(1/3)*x + b^(2/3)*x^2)/((1 + Sqrt[3])*a^(1/3) + b^(1/3)*x)^2]*Ellip 
ticE[ArcSin[((1 - Sqrt[3])*a^(1/3) + b^(1/3)*x)/((1 + Sqrt[3])*a^(1/3) + b 
^(1/3)*x)], -7 - 4*Sqrt[3]])/(b^(1/3)*Sqrt[(a^(1/3)*(a^(1/3) + b^(1/3)*x)) 
/((1 + Sqrt[3])*a^(1/3) + b^(1/3)*x)^2]*Sqrt[a + b*x^3])))/b^(1/3) + (2*Sq 
rt[2 + Sqrt[3]]*(c - ((1 - Sqrt[3])*a^(1/3)*d)/b^(1/3))*(a^(1/3) + b^(1/3) 
*x)*Sqrt[(a^(2/3) - a^(1/3)*b^(1/3)*x + b^(2/3)*x^2)/((1 + Sqrt[3])*a^(1/3 
) + b^(1/3)*x)^2]*EllipticF[ArcSin[((1 - Sqrt[3])*a^(1/3) + b^(1/3)*x)/((1 
 + Sqrt[3])*a^(1/3) + b^(1/3)*x)], -7 - 4*Sqrt[3]])/(3^(1/4)*b^(1/3)*Sqrt[ 
(a^(1/3)*(a^(1/3) + b^(1/3)*x))/((1 + Sqrt[3])*a^(1/3) + b^(1/3)*x)^2]*Sqr 
t[a + b*x^3])
 

3.1.62.3.1 Defintions of rubi rules used

rule 759
Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], 
s = Denom[Rt[b/a, 3]]}, Simp[2*Sqrt[2 + Sqrt[3]]*(s + r*x)*(Sqrt[(s^2 - r*s 
*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[s* 
((s + r*x)/((1 + Sqrt[3])*s + r*x)^2)]))*EllipticF[ArcSin[((1 - Sqrt[3])*s 
+ r*x)/((1 + Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]], x]] /; FreeQ[{a, b}, x] & 
& PosQ[a]
 

rule 2019
Int[(u_.)*(Px_)^(p_.)*(Qx_)^(q_.), x_Symbol] :> Int[u*PolynomialQuotient[Px 
, Qx, x]^p*Qx^(p + q), x] /; FreeQ[q, x] && PolyQ[Px, x] && PolyQ[Qx, x] && 
 EqQ[PolynomialRemainder[Px, Qx, x], 0] && IntegerQ[p] && LtQ[p*q, 0]
 

rule 2416
Int[((c_) + (d_.)*(x_))/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = N 
umer[Simplify[(1 - Sqrt[3])*(d/c)]], s = Denom[Simplify[(1 - Sqrt[3])*(d/c) 
]]}, Simp[2*d*s^3*(Sqrt[a + b*x^3]/(a*r^2*((1 + Sqrt[3])*s + r*x))), x] - S 
imp[3^(1/4)*Sqrt[2 - Sqrt[3]]*d*s*(s + r*x)*(Sqrt[(s^2 - r*s*x + r^2*x^2)/( 
(1 + Sqrt[3])*s + r*x)^2]/(r^2*Sqrt[a + b*x^3]*Sqrt[s*((s + r*x)/((1 + Sqrt 
[3])*s + r*x)^2)]))*EllipticE[ArcSin[((1 - Sqrt[3])*s + r*x)/((1 + Sqrt[3]) 
*s + r*x)], -7 - 4*Sqrt[3]], x]] /; FreeQ[{a, b, c, d}, x] && PosQ[a] && Eq 
Q[b*c^3 - 2*(5 - 3*Sqrt[3])*a*d^3, 0]
 

rule 2417
Int[((c_) + (d_.)*(x_))/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = N 
umer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[(c*r - (1 - Sqrt[3])*d*s)/r 
  Int[1/Sqrt[a + b*x^3], x], x] + Simp[d/r   Int[((1 - Sqrt[3])*s + r*x)/Sq 
rt[a + b*x^3], x], x]] /; FreeQ[{a, b, c, d}, x] && PosQ[a] && NeQ[b*c^3 - 
2*(5 - 3*Sqrt[3])*a*d^3, 0]
 
3.1.62.4 Maple [A] (verified)

Time = 1.52 (sec) , antiderivative size = 720, normalized size of antiderivative = 1.47

method result size
elliptic \(-\frac {2 i c \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}} \sqrt {\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}\, \sqrt {\frac {x -\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{b}}{-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}}}\, \sqrt {-\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}\, F\left (\frac {\sqrt {3}\, \sqrt {\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}}{3}, \sqrt {\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{b \left (-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right )}}\right )}{3 b \sqrt {b \,x^{3}+a}}-\frac {2 i d \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}} \sqrt {\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}\, \sqrt {\frac {x -\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{b}}{-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}}}\, \sqrt {-\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}\, \left (\left (-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) E\left (\frac {\sqrt {3}\, \sqrt {\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}}{3}, \sqrt {\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{b \left (-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right )}}\right )+\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}} F\left (\frac {\sqrt {3}\, \sqrt {\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}}{3}, \sqrt {\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{b \left (-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right )}}\right )}{b}\right )}{3 b \sqrt {b \,x^{3}+a}}\) \(720\)
default \(\text {Expression too large to display}\) \(1536\)

input
int((b*d*x^4+b*c*x^3+a*d*x+a*c)/(b*x^3+a)^(3/2),x,method=_RETURNVERBOSE)
 
output
-2/3*I*c*3^(1/2)/b*(-a*b^2)^(1/3)*(I*(x+1/2/b*(-a*b^2)^(1/3)-1/2*I*3^(1/2) 
/b*(-a*b^2)^(1/3))*3^(1/2)*b/(-a*b^2)^(1/3))^(1/2)*((x-1/b*(-a*b^2)^(1/3)) 
/(-3/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3)))^(1/2)*(-I*(x+1/2/ 
b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))*3^(1/2)*b/(-a*b^2)^(1/3)) 
^(1/2)/(b*x^3+a)^(1/2)*EllipticF(1/3*3^(1/2)*(I*(x+1/2/b*(-a*b^2)^(1/3)-1/ 
2*I*3^(1/2)/b*(-a*b^2)^(1/3))*3^(1/2)*b/(-a*b^2)^(1/3))^(1/2),(I*3^(1/2)/b 
*(-a*b^2)^(1/3)/(-3/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3)))^(1 
/2))-2/3*I*d*3^(1/2)/b*(-a*b^2)^(1/3)*(I*(x+1/2/b*(-a*b^2)^(1/3)-1/2*I*3^( 
1/2)/b*(-a*b^2)^(1/3))*3^(1/2)*b/(-a*b^2)^(1/3))^(1/2)*((x-1/b*(-a*b^2)^(1 
/3))/(-3/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3)))^(1/2)*(-I*(x+ 
1/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))*3^(1/2)*b/(-a*b^2)^(1 
/3))^(1/2)/(b*x^3+a)^(1/2)*((-3/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2 
)^(1/3))*EllipticE(1/3*3^(1/2)*(I*(x+1/2/b*(-a*b^2)^(1/3)-1/2*I*3^(1/2)/b* 
(-a*b^2)^(1/3))*3^(1/2)*b/(-a*b^2)^(1/3))^(1/2),(I*3^(1/2)/b*(-a*b^2)^(1/3 
)/(-3/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3)))^(1/2))+1/b*(-a*b 
^2)^(1/3)*EllipticF(1/3*3^(1/2)*(I*(x+1/2/b*(-a*b^2)^(1/3)-1/2*I*3^(1/2)/b 
*(-a*b^2)^(1/3))*3^(1/2)*b/(-a*b^2)^(1/3))^(1/2),(I*3^(1/2)/b*(-a*b^2)^(1/ 
3)/(-3/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3)))^(1/2)))
 
3.1.62.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.09 (sec) , antiderivative size = 43, normalized size of antiderivative = 0.09 \[ \int \frac {a c+a d x+b c x^3+b d x^4}{\left (a+b x^3\right )^{3/2}} \, dx=\frac {2 \, {\left (\sqrt {b} c {\rm weierstrassPInverse}\left (0, -\frac {4 \, a}{b}, x\right ) - \sqrt {b} d {\rm weierstrassZeta}\left (0, -\frac {4 \, a}{b}, {\rm weierstrassPInverse}\left (0, -\frac {4 \, a}{b}, x\right )\right )\right )}}{b} \]

input
integrate((b*d*x^4+b*c*x^3+a*d*x+a*c)/(b*x^3+a)^(3/2),x, algorithm="fricas 
")
 
output
2*(sqrt(b)*c*weierstrassPInverse(0, -4*a/b, x) - sqrt(b)*d*weierstrassZeta 
(0, -4*a/b, weierstrassPInverse(0, -4*a/b, x)))/b
 
3.1.62.6 Sympy [A] (verification not implemented)

Time = 1.62 (sec) , antiderivative size = 78, normalized size of antiderivative = 0.16 \[ \int \frac {a c+a d x+b c x^3+b d x^4}{\left (a+b x^3\right )^{3/2}} \, dx=\frac {c x \Gamma \left (\frac {1}{3}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{3}, \frac {1}{2} \\ \frac {4}{3} \end {matrix}\middle | {\frac {b x^{3} e^{i \pi }}{a}} \right )}}{3 \sqrt {a} \Gamma \left (\frac {4}{3}\right )} + \frac {d x^{2} \Gamma \left (\frac {2}{3}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{2}, \frac {2}{3} \\ \frac {5}{3} \end {matrix}\middle | {\frac {b x^{3} e^{i \pi }}{a}} \right )}}{3 \sqrt {a} \Gamma \left (\frac {5}{3}\right )} \]

input
integrate((b*d*x**4+b*c*x**3+a*d*x+a*c)/(b*x**3+a)**(3/2),x)
 
output
c*x*gamma(1/3)*hyper((1/3, 1/2), (4/3,), b*x**3*exp_polar(I*pi)/a)/(3*sqrt 
(a)*gamma(4/3)) + d*x**2*gamma(2/3)*hyper((1/2, 2/3), (5/3,), b*x**3*exp_p 
olar(I*pi)/a)/(3*sqrt(a)*gamma(5/3))
 
3.1.62.7 Maxima [F]

\[ \int \frac {a c+a d x+b c x^3+b d x^4}{\left (a+b x^3\right )^{3/2}} \, dx=\int { \frac {b d x^{4} + b c x^{3} + a d x + a c}{{\left (b x^{3} + a\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate((b*d*x^4+b*c*x^3+a*d*x+a*c)/(b*x^3+a)^(3/2),x, algorithm="maxima 
")
 
output
integrate((b*d*x^4 + b*c*x^3 + a*d*x + a*c)/(b*x^3 + a)^(3/2), x)
 
3.1.62.8 Giac [F]

\[ \int \frac {a c+a d x+b c x^3+b d x^4}{\left (a+b x^3\right )^{3/2}} \, dx=\int { \frac {b d x^{4} + b c x^{3} + a d x + a c}{{\left (b x^{3} + a\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate((b*d*x^4+b*c*x^3+a*d*x+a*c)/(b*x^3+a)^(3/2),x, algorithm="giac")
 
output
integrate((b*d*x^4 + b*c*x^3 + a*d*x + a*c)/(b*x^3 + a)^(3/2), x)
 
3.1.62.9 Mupad [F(-1)]

Timed out. \[ \int \frac {a c+a d x+b c x^3+b d x^4}{\left (a+b x^3\right )^{3/2}} \, dx=\int \frac {b\,d\,x^4+b\,c\,x^3+a\,d\,x+a\,c}{{\left (b\,x^3+a\right )}^{3/2}} \,d x \]

input
int((a*c + a*d*x + b*c*x^3 + b*d*x^4)/(a + b*x^3)^(3/2),x)
 
output
int((a*c + a*d*x + b*c*x^3 + b*d*x^4)/(a + b*x^3)^(3/2), x)